宁洱人工湿地脱氮除磷技术
来源: 发布时间:2019-02-16 77849 次浏览
人工湿地是20世纪70年代新兴的一种污水处理方式,其利用基质、水生植物和微生物之间的相互作用,通过过滤、吸附、共沉淀、离子交换、植物吸收和微生物分解等方式来实现对废水中有害物质的去除,同时通过营养物质和水分的循环,实现对水的净化。近年来,人工湿地以其投资费用低,建设、运行成本低,处理过程能耗低,处理效果稳定,景观效应良好等优点多被用于改善景观水体水质之中。人工湿地还具有强大的生态功能,包括生物多样性保护、水源净化及保护与供给、气候调节、野生资源开发以及生态环境科学研究等诸多方面。
1人工湿地脱氮的机理及其主要影响因素
1.1脱氮机理
人工湿地中的氮通过微生物的氨化、硝化与反硝化作用,植物的吸收,基质的吸附、过滤、沉淀等途径筛除。其中氨化、硝化与反硝化作用是去除氮的主要途径,其基本条件是湿地中存在大量的氨化菌、硝化菌、反硝化菌和适当的湿地土壤环境条件。
氨氮可被植物直接摄取,合成(解释:由几个部分合并成一个整体)植物蛋白质(protein)与有机氮后,再通过植物的收割从湿地系统中除去。湿地植物根毛的输氧及传递特性,使根系周围连续呈现好氧、缺氧及厌氧状态,相当于许多串联或并联的处理单元,使硝化和反硝化作用可以在湿地系统中同时进行。
基质是人工湿地不可缺少的组成部分,它为人工湿地中微生物的生长提供稳定的依附表面,为水生植物提供生长载体和营养物质,同时,基质本身对污水净化也有重要的作用。
1.2影响脱氮的主要因素
1.2.1基质
不同基质类型对脱氮效果的影响不同。WendongTao等研究发现,石灰石基质和铺路石对氨氮和TN的去除效果无太大差别,但是石灰石基质能够增大亚硝酸盐的含量,将其最高质量浓度从3.6mg/L增加到4.7mg/L,从而更有利于厌氧氨氧化,提高对氮的去除率。
有研究表明:在相同进水水质和水力负荷条件下,页岩填料对CO
D、T
N、TP去除效果最好,最高去除率可分别达到60%、80%、85%,其次为页岩与粗砾石组合填料,麦饭石去除效果较差。
周炜等的试验结果表明,在8月份,沸石床复合流人工湿地NH4+-N去除率在95%左右,TN去除率接近80%,硝态氮去除率在96%左右;而炉渣和砾石人工湿地与沸石床相比,除出水硝态氮无太大变化外,NH4+-N和TN的去除率较低,约为10%、50%。
此外,一般来说,分层的基质要比不分层的处理效果好。研究表明,不同粒径分层级配基质对COD的去除率均高于单一粒径基质,其中分层级配生物陶粒对COD的平均去除率高达72.91%。分层级配沸石对TN的净化能力较单一粒径基质有所提高,平均去除率高达91.23%。
1.2.2水生植物
水生植物是人工湿地的重要组成部分,对氮的去除有很大的影响。张荣社等研究表明,无植物床、芦苇床和茭草床TN去除率分别达48.7%、75.6%、63.5%。可见植物对湿地中氮的去除有很大影响。
Z.Yousefi等通过实验对比了黄花鸢尾碎石床人工湿地与空白床对TN的去除效果,结果表明,黄花鸢尾床对TN的去除效果比空白床好,二者的去除率分别为49.4%、43.4%。
不同的湿地植物对人工湿地的净化效果的影响不同。SixiZhu等研究发现,豆类植物不影响生物质生产以及基质中硝酸盐和铵盐的截留;C3类植物和C4类植物影响植物水上部分生物质的生产;最重要的是,植物的多样性越高越有利于生物质的生产和基质中氮的截留,因此,更有利于人工湿地脱氮。
韩苏娟等研究结果表明:黄菖蒲、芦苇、水莎草湿地对TN去除率较好,平均去除率分别为33.29%、30.58%、30.38%;臭蒲和香蒲对TN去除效果次之,分别为25.84%、22.92%;大红草对TN去除效果最差,仅为18.09%。
水生植物不仅可以直接摄取污水中的富营养物质,而且其根系的泌氧功能为微生物分解转化有机物提供了适宜的环境条件。植物向湿地中传输的氧气量直接影响其运行机制。水生植物可以传输约90%的氧到根系周围,从而加强微生物的硝化作用,去除水中氮。
1.2.3微生物
人工湿地中的微生物在有机物的降解转化方面发挥着重要作用。付融冰等研究发现,在距人工湿地进水沿程50cm处氨化细菌和亚硝化细菌个数最多,分别为:氨化细菌3.5×106mL-1,亚硝化细菌3.0×103mL-1,且此处TN的去除率也最高,为31.6%。随着以上两种细菌数的减少,TN的去除率也在降低。这说明湿地的氮去除效果与硝化细菌等微生物数量呈正相关。
张鸿等实验表明,由于水芹湿地和凤眼莲湿地中含有大量的硝化细菌,水芹和凤眼莲湿地对氨氮的净化率比对照组分别高8.7%、11.7%。这说明微生物在湿地对氮的去除中发挥着很重要的作用。
1.2.4进水的影响
YongjunZhao等研究表明,控制进水m∶m∶m在一定范围内,能使有植物的人工湿地中的微生物发生相似转化,而无植物的人工湿地中的微生物则会出现脱离湿地的现象,因此,建议在建设人工湿地时应尽量种植植物,并选择合适的m∶m∶m,防止微生物异化和脱离湿地。中空纤维膜纺丝机通过膜技术进行水处理,应用于制药、酿造、餐饮、化工、市政污水回佣、医院、小区污水会用、造纸等生产生活污水处理。膜分离技术是一种广泛应用于溶液或气体物质分离、浓缩和提纯的分离技术。膜壁微孔密布,原液在一定压力下通过膜的一侧,溶剂及小分子溶质透过膜壁为滤出液,而大分子溶质被膜截留,达到物质分离及浓缩的目的。膜分离过程为动态过滤过程,大分子溶质被膜壁阻隔,随浓缩液流出,膜不易被堵塞,可连续长期使用。
研究表明,湿地进水碳(C)氮比变化时,TN的去除率随着碳氮比的增大而逐渐升高;NH4+-N的去除率随着碳氮比的增加而降低。
2人工湿地除磷的机理及其主要影响因素
2.1除磷机理
人工湿地通过水生植物、基质和微生物的共同作用来完成对磷的去除。研究证明,人工湿地中基质对磷的去除是最主要途径,包括(bāo kuò)物理去除和化学沉淀去除两大过程。
无机磷也是植物必需的营养元素(nutritive element),废水中无机磷可被植物吸收利用组成卵磷脂、核酸及ATP等,然后通过植物的收割而移去。
微生物对磷的去除包括对磷的正常同化和过量积累。由于人工湿地系统中植物光合作用光反应、暗反应交替进行,根毛输氧也交替出现,以及系统内部不同区域对氧消耗量存在差异,从而导致系统中好氧和厌氧情况交替出现,使磷的过量释放和过量积累得以顺利完成。
2.2影响除磷的主要因素
2.2.1基质
不同基质对磷的去除存在较大差异,若土壤中含有较多的钙、铁、铝氧化物,则有利于生成溶解度很低的磷酸(化学式: H3PO4)铁或磷酸铝,增强土壤的去磷能力。
A.Drizo等研究(research)表明:粉煤灰对磷的吸附量最高,其次是页岩、铝矾土、石灰石、陶粒和沸石,其中页岩和铝矾土的累积磷吸附量最高,分别为7
30、355mg/kg,而X射线荧光分析发现,页岩表面有大量的磷沉淀,由此可以得出,页岩是这几种人工湿地填料中除磷效果最好的填料。
YouqinZou等对比分别由陶粒和砂砾建成的两组人工湿地发现,在水力负荷为2.53~6.74cm/d区间,陶粒床人工湿地对CO
D、NH4+-
N、TP的去除率分别为83.3%、98.21%、98.98%,优于砂砾人工湿地的处理效果。Y.Q.Zhao等研究发现,明矾污泥和碎石床人工湿地系统对TP的月去除率高达94%,对无机磷的月去除率高达97%,足见明矾污泥在湿地除磷中的前景。
2.2.2水生植物
水生植物在人工湿地除磷中有举足轻重的作用,有植物的湿地对磷的去除有很好的效果。研究发现,黄花鸢尾碎石床人工湿地对TP的去除效果明显优于无植物碎石床,其TP去除率分别为67.6%、57.4%,可见黄花鸢尾对TP的去除有很大影响。
李林锋等研究(research)表明:有湿地植物的湿地TP筛除率为56%~65%,远高于没有植物的湿地对TP的去除率;其中,植有香蒲、芦苇与茭白的人工湿地TP平均去除率约为62.6%,植有水葱和千屈菜的人工湿地TP去除率约为57%,植有鸢尾和菖蒲的人工湿地TP去除率约为59%。
2.2.3微生物
微生物在湿地除磷中有着重要的作用。研究表明,由于水芹湿地和凤眼莲湿地中含有大量的磷细菌,水芹和凤眼莲湿地对磷的净化率比空白床分别高16.0%、8.1%。由于含磷细菌量高于另外两组湿地,水芹湿地在整个过程中对磷的去除率都高于对照组和凤眼莲湿地,平均高出16.0%、9.7%。
凌云等研究(research)表明:微生物的增加使TP平均去除率达到20.9%,高于空白的18.3%。可见微生物对磷的去除有一定影响(influence)。
2.2.4进水的影响
湿地进水可影响湿地微生物及植物的生长,从而影响处理效果。中空纤维膜纺丝机通过膜技术进行水处理,应用于制药、酿造、餐饮、化工、市政污水回佣、医院、小区污水会用、造纸等生产生活污水处理。膜分离技术是一种广泛应用于溶液或气体物质分离、浓缩和提纯的分离技术。膜壁微孔密布,原液在一定压力下通过膜的一侧,溶剂及小分子溶质透过膜壁为滤出液,而大分子溶质被膜截留,达到物质分离及浓缩的目的。膜分离过程为动态过滤过程,大分子溶质被膜壁阻隔,随浓缩液流出,膜不易被堵塞,可连续长期使用。研究表明:随着碳源的增加,释磷菌能够从进水中获得充足的碳源,从而可以比较充分地释磷,因此,磷的去除率随碳氮比的增加而提高。
汤显强等研究表明:与无曝气人工湿地系统相比,中部曝气使可溶性活性磷(P)和TP月平均去除率分别提高10.2%、8.8%,底部曝气则为7.7%、7.4%,可见间歇曝气能够有效提高人工潜流湿地磷去除效率。
3人工湿地脱氮除磷中存在的问题及对策
3.1存在的主要问题
虽然人工湿地在脱氮除磷(P)方面有很大优势,但也存在很多问题。如低溶解氧限制对氮、磷的去除;单
一、单级基质难达到预期处理效果;填料堵塞问题;植物的合理选取与搭配以及植物枯萎造成对水体的二次污染等问题。膜生物反应器膜分离技术与生物处理技术有机结合之新型态废水处理系统。以膜组件取代传统生物处理技术末端二沉池,在生物反应器中保持高活性污泥浓度,提高生物处理有机负荷,从而减少污水处理设施占地面积,并通过保持低污泥负荷减少剩余污泥量。主要利用沉浸于好氧生物池内之膜分离设备截留槽内的活性污泥与大分子有机物。膜生物反应器系统内活性污泥(MLSS)浓度可提升至8000~10,000mg/L,甚至更高;污泥龄(SRT)可延长至30天以上。
3.2提高脱氮除磷的措施
人工湿地对氮磷(P)的去除与基质、微生物、植物种类、污水类型、水力负荷、水文特征、气候特征等因素密切相关(related),为了提高对氮磷的去除效果,建议考虑采用以下措施:
在污水进入人工湿地前进行充氧,提高污水的溶合氧浓度,为微生物(Micro-Organism)创造一定的有氧环境,促进亚硝酸菌和硝酸菌的增殖,从而提高人工湿地的硝化能力;也可利用垂直流人工湿地的特点,发挥其溶解氧含量高的优点,强化对氮、磷的去除。
采用沸石等富含C
A、Fe和Al等的基质,提高对P的吸附筛除;研究(research)新型填料,强化对
N、P的吸附作用;采用多种填料组合使用,提高填料的分级,选用合适的粒径级配等措施来强化处理效果。
改善进水方式,采用间歇进水,防止填料堵塞,提高对N的去除;对湿地进水预处理,采用不同湿地类型交叉联合设置提高处理效果的稳定性。具体参见
选用氮磷吸收能力强、具抗逆性、有一定经济利用价值和景观价值、易管理的湿地植物;考虑采用多种植物混合种植,提高去除效果。
及时收割湿地植物和更换基质,避免因植物枯萎和基质吸附饱和释放污染物对水体造成的二次污染。
近年来水处理专家侧重于人工湿地组成的各个影响因素研究,从而局部上改进了人工湿地脱除氮磷的效力,并实践组合交叉不同类型的湿地,从整体上优化人工湿地的作用。但作为人工建造的生态系统,人工湿地有其不足之处,脱氮除磷技术有待不断完善和发展。在今后的研究中势必要加强高效脱除氮磷基质研究,根据污水中氮磷污染物的种类、特征采取几种基质的组合或开发复合基质;加强人工湿地脱除氮磷机理的研究,使人工湿地与城市建设有机结合,解决生活污水高氮磷;通过试验筛选利于氮、磷双方面脱除的微生物,并根据污水氮磷的具体情况合理组合微生物群。
上一篇: 宁洱人工湿地脱氮技术
下一篇: 宁洱人造金刚石含镍酸性废水处理技术