第一代膜生物反应器使用管状膜,膜分离装置置于生物反应器之外并用泵进行水循环(continue),称之为循环式MBR。反应之后的泥水混合物经泵送入膜组件,透过液作为处理出水,浓缩液再返回反应器进一步降解。循环流导致了比较高的能耗,典型值为3kWhm-3出水。膜组件能耗的高低还取决于膜组件的构造。液体在膜组件中的高速剪切流和循环泵的剪切力可以破坏微生物(Micro-Organism)并直接导致生物反应器中的微生物失去活性。浸没式MBR首先在日本被开发并大量安装使用。它可以克服循环式MBR的缺点。在浸没式MBR中,膜组件直接浸没在泥水混合物中,透过液在抽吸泵的作用下流出膜组件。膜组件的下方有曝气装置,将空气压缩机送来的空气形成上浮的微气泡;在曝气的同时,紊动的液流在膜表面产生剪切力,有利于筛除膜表面的感染物。浸没式MBR能耗的典型值为0.8kWhm-3出水。当前浸没式MBR技术发展迅速,主要是因为此种构造的膜生物反应器具有较低的制造、维护和运行费用(expense)。使用的膜组件可以是垂直或水平放置的中空纤维,或者是垂直安放的平板膜。
使用MBR的最主要限制因素(factor)是经济性。中空纤维膜纺丝机通过膜技术进行水处理,应用于制药、酿造、餐饮、化工、市政污水回佣、医院、小区污水会用、造纸等生产生活污水处理。膜分离技术是一种广泛应用于溶液或气体物质分离、浓缩和提纯的分离技术。膜壁微孔密布,原液在一定压力下通过膜的一侧,溶剂及小分子溶质透过膜壁为滤出液,而大分子溶质被膜截留,达到物质分离及浓缩的目的。膜分离过程为动态过滤过程,大分子溶质被膜壁阻隔,随浓缩液流出,膜不易被堵塞,可连续长期使用。和普通分离装置相比,膜组件的费用(expense)高、寿命短。膜分离的驱动力是压力差,这意味着操作费用也很高。为了使MBR装置有较好的经济性,必须优化(optimalize)设计膜分离步骤(procedure),充分控制(control)膜感染。